A New Chalcone, Xanthones, and a Xanthonolignoid from *Hypericum* geminiflorum

Mei-Ing Chung,* Jing-Ru Weng, Mei-Hsun Lai, Ming-Hong Yen, and Chun-Nan Lin

School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 807, Republic of China

Received November 23, 1998

A new prenyl chalcone, gemichalcone C (1), was isolated from the heartwood and root of *Hypericum* geminiflorum. Three new xanthones—6,7-dihyroxy-1,3-dimethoxyxanthone (2), 4-hydroxy-1,2-dimethoxy xanthone (3), and gemixanthone A (4)—and four known xanthones were isolated from the leaves and stems of the same plant.

Recently we isolated and characterized several constituents of the heartwood and root of *Hypericum geminiflorum* (Guttiferae).¹ Continuing studies on this plant have resulted in the isolation of a new prenyl chalcone, gemichalcone C (1); three new xanthones, 6,7-dihydroxy-1,3-dimethoxy xanthone (2), 4-hydroxy-1,2-dimethoxyxanthone (3), and gemixanthone A (4); and four known xanthones, toxyloxanthone B,² 1,5,6-trihydroxy-3-methoxyxanthone,³ 3,8-dihydroxy-1,2-dimethoxyxanthone,⁴ and 1,3,5,6-tetrahydroxy xanthone.⁵ In the present paper we report the isolation and the stuctural characterization of compounds 1-4.

Compound **1** possessed the molecular formula $C_{30}H_{28}O_{9}$, as determined from FABMS ($[M + 1]^+$ at m/z 533). Its IR spectrum showed absorption for an ester group (1720 cm⁻¹), and the UV spectrum exhibited absorption maxima similar to those of morachalcone A.⁶ The ¹H NMR spectrum of 1 showed a vinyl methyl signal at δ 1.74 (s), a methylene signal at δ 3.50, a singlet of OCH₂ signal at δ 4.96, an olefinic proton signal at δ 5.58, a methoxyl signal at δ 3.93, a 1,2,4-trisubstituted phenyl moiety (δ 6.52, 6.46, and 7.69); a 1',2',3',4'-tetrasubstituted phenyl moiety (δ 6.54, and 7.94); α and β proton signals in a chalcone skeleton (δ 7.80 and 8.22),¹ABX-type signals at δ 6.87, 7.16, and 7.37; a cinnamoyl moiety indicated by doublets at δ 6.44 (H-8") and 7.62 (H-7");¹ and a hydrogen-bonded hydroxyl signal (δ 14.21). Based on above evidence, and the absence of a bathochromic shift induced by AlCl₃, 1 was concluded to be a 3"-methoxylated 3",4"-dioxygenated or 4"-methoxylated 3",4"-dioxygenated cinnamoyl ester of a 3'-substituted 2',4',2,4-tetrahydroxychalcone.

The ¹³C NMR spectrum (Table 1) was assigned by, DEPT, ¹H–¹H COSY, NOESY, and comparison of chemical shift values with those of corresponding data of morachalcone A and gemichalcone A.^{1.8} The NOESY spectrum showed intense interaction between H-2" and OMe. Therefore, **1** was characterized as 3'-[γ -hydroxymethyl-(z)- γ -methylallyl]-2',4',2,4-tetrahydroxychalcone 11'-*O*-ferulate, named gemichalcone C.

The HREIMS of **2** indicated a molecular ion peak at m/z 288.0635, which corresponded to the molecular formula $C_{15}H_{12}O_6$. Its IR spectrum showed absorption bands for hydroxyl (3330 cm⁻¹), conjugated carbonyl (1633 cm⁻¹), and aromatic rings (1581 cm⁻¹), and the UV spectrum exhibited absorption maxima similar to those of tripteroside.⁹ The ¹H NMR spectrum showed two methoxyl signals at δ 3.70

and 3.86 and four aromatic proton signals at δ 6.71, 6.81, 7.16, and 8.04. This evidence and the UV spectrum showing a bathochromic shift with NaOAc and NaOAc–H₃BO₃, but not on addition of AlCl₃, indicated that **2** is 6,7-dihydroxy-1,3-dimethoxyxanthone. The ¹³C NMR signals were assigned by DEPT and comparison with corresponding data in the literature.¹⁰ The ¹³C NMR and MS data also support structure **2**.

The HREIMS of **3** indicated $[M]^+$ at m/z 272.0681, which corresponded to molecular formula $C_{15}H_{12}O_5$. Its IR spectrum showed absorption bands for hydroxyl (3286 cm⁻¹), conjugated carbonyl (1656 cm⁻¹), and aromatic rings (1600 cm⁻¹), and the UV spectrum exhibited absorption maxima characteristic of xanthones.¹¹ The ¹H NMR spectrum showed two methoxyl signals at δ 3.88 and 3.89 and five aromatic proton signals at δ 7.19, 7.24, 7.62, 7.80, and 8.18. The absence of a bathochromic shift with AlCl₃, NaOAc, and NaOAc-H₃BO₃ in the UV spectrum and the presence of an *ortho*-dimethoxyl group (δ 57.1 and 61.9) in the ¹³C NMR spectrum indicated that **3** is 4-hydroxy-1,2dimethoxyxanthone (3).¹² The ¹³C NMR spectrum was assigned by DEPT and comparison with corresponding data in the literature.^{12,13} The ¹³C NMR and MS data also support structure 3.

Compound 4 was acetylated because we were unable to isolate it in pure form. The HREIMS of peracetate (5) indicated a molecular ion peak at m/z 638.1675, which corresponded to molecular formula C₃₂H₃₀O₁₄. Its IR spectrum showed absorption bands for ester (1775 cm⁻¹), conjugated carbonyl (1660 cm⁻¹), and aromatic (1660 cm⁻¹) rings, and the UV spectrum exhibited absorption characteristic of a xanthone.¹¹ The ¹H MNR spectrum (Table 1) indicated three acetyl proton signals at δ 2.10, 2.34, and 2.35; four methoxyl proton signals at δ 3.84, 3.95, and 4.00; and five aromatic proton signals at δ 6.57, 6.66, 7.01, and 7.36.¹⁴ The spectrum of **5** also showed trans diaxial dioxane proton signals at δ 4.39 (H, ddd, J = 7.5, 4.3, 3.4 Hz) and 5.04 (1H, d, J = 7.5 Hz).^{14,15} The deshielded doublet (δ 5.04) typical of a benzylic methylene substituted by oxygen and its typical trans-coupling (J = 7.5 Hz) implied the existence of a trans-substituted 1,4-dioxane ring between the xanthone moiety and the phenyl ring. A significant peak at m/z 252 could be rationalized in terms of a retro-Diels-Alder reaction in the dioxane ring.^{14,15} The ions at m/2252, 210, 209, 192, 182, and 181 indicated that an acetyl group and two methoxyl groups were present on the phenyl ring. ^{14,15} The ¹H NMR spectrum of **5** also showed two aliphatic proton signals of $-CH_2O-$ group at δ 4.15 (dd, J = 12.3, 4.3 Hz) and 4.49 (dd, J = 12.3, 3.4 Hz). The NOESY

^{*} To whom correspondence should be addressed. Tel.: +886 7 3121101, ext 2163. Fax: +886 7 3412365. E-mail: meinch@cc.kmc.edu.tw.

Table 1.	¹³ C NM	R Data fo	r 1 and	5^a and	¹ H NN	/R Data	for 5
TUDIC I.		IV Data IV		o unu	II I N I N I N	my Data	101 0

	$1(\delta^{-13}C)$		5 ^b (δ ¹³ C)	5 ^{<i>b</i>} (δ ¹ H)
С	(100 MHz, Me_2CO-d_6)	С	(100 MHz, CDCl ₃)	(400 MHz, CDCl ₃)
1	116.6	5	77.3	5.04, 1H, d (7.5)
2	163.5 ^c	6	75.3	4.39, 1H, ddd (7.5, 4.3, 3.4)
3	104.3	1′	97.6	7.36, 1H, s
4	163.5 ^c	2'	146.0	
5	109.9	3′	138.5	
6	132.4	4'	131.6	
α	119.0	4'a	140.7	
β	146.0	10'a	158.4	
CO	193.7	5′	103.4	7.10, 1H, d (2.0)
1′	115.7	6'	154.9	
2′	165.8	7'	100.1	6.57, 1H, d (2.0)
3′	115.0	8′	161.7	
		8'a	110.2	
4'	163.5	9'	174.7	
5'	108.6	9'a	116.4	
6′	131.0	1″	129.6	
7′	22.8	2″	104.1	6.66, 1H, s
8′	129.2	3″	152.8	
9′	131.7	4‴	133.0	
10'	22.3	5″	152.8	
11′	64.2	6″	104.1	6.66, 1H,s
1″	128.2	CH ₂ O	62.5	4.15, 1H, dd (12.3, 4.3)
2″	112.0			4.49, 1H, dd (12.3, 3.4)
3″	149.5	CH ₂ OCOCH ₃	170.3	
4‴	150.7	COCH ₃ -6'	168.4	
5″	116.6	$COCH_3-4''$	168.4	
6″	124.6	MeO-2'	56.6	3.95, 3H, s
7″	146.3	MeO-8′	56.6	4.00, 3H, s
8″	116.6	MeO-3" and 5"	56.3	3.84, 6H, s
9″	168.3	CH ₂ OCO <i>CH</i> ₃	20.7	2.10, 3H, s
OMe	57.0	CO <i>CH</i> ₃ -6'	21.1	2.35. 3H. s

^{*a*} The number of protons directly attached to each carbon was verified by DEPT. ^{*b*} Signals obtained by ${}^{1}\text{H}-{}^{1}\text{H}$ COSY, HMQC, HMBC, and NOESY spectra. ^{*c*} Assignments may be reversed. Coupling constants (*J* in Hz) are given in parentheses.

20.7

COCH3-4"

Figure 1. ${}^{13}C^{-1}H$ long-range correlations of **5** obtained from HMBC spectra (--) and NOEs observed in phase-sensitive NOESY of **5** (+-).

spectrum indicated correlations between H-1' and the methoxyl signal at δ 3.95, the methoxyl signal at δ 3.95 and the (-CH₂O-) signal at δ 4.15, and the alphatic proton (-CH₂O-) signal at δ 4.15 and the dioxane proton signal at δ 4.39 (Figure 1). Acetyl signals were absent in the ¹H NMR spectra of impure **4**, thus, the xanthonolignoid, gemixanthone A (**4**), could be characterized as (5*S*,6*S*)-6-hydroxymethyl-5-(4"-hydroxy-3",5"-dimethoxyphenyl)-2,3: 3', 4'-(6'-hydroxy-2', 8'-dimethoxyxanthone)-1,4-dioxane. The ¹³C NMR spectral data (Table 1) of **5** were consistent with the proposed structure **4**.

Experimental Section

General Experimental Procedures. Melting points reported are uncorrected. The optical rotation was obtained on a JASCO model DIP-370 digital polarimeter. UV spectra were

2.34, 3H, s

2: R₁ = R₂= OMe, R₂= R₄=H, R₅= R₆= OH 3: R₁= R₂=OMe, R₃= R₅= R₆= H, R₄=OH

obtained on a JASCO model 7800 UV/vis spectrophotometer, and IR spectra were recorded on a Hitachi model 260-30 spectrophotometer. ¹H (400 MHz) and ¹³C (100 MHz) NMR

spectra were recorded on a Varian Unity-400 spectrometer, and MS were obtained on a JMS-HX 100 mass spectrometer.

Plant Material. Whole plants of H. geminiflorum were collected at Ping Tung Hsieng, Taiwan, during November 1993, and a voucher specimen (9302) has been deposited at the Department of Medicinal Chemistry, School of Pharmacy, Kaohsiung Medical College.

Extraction and Isolation. The heartwood and root (3 kg) were chipped and extracted with MeOH and Me₂CO, successively. The Me₂CO extract (55 g) was chromatographed over Si gel. Elution with hexane-CHCl₃-Me₂CO-MeOH (1:7:2:0.2) yielded 1 (6 mg). The leaf (3 kg) was chipped and extracted with MeOH. The MeOH extract (50 g) was chromatographed over Si gel. Elution with hexane-EtOAc-MeOH (7: 12: 1) vielded fraction A. Fraction A was chromatographed over Si gel, and elution with CH₂Cl₂-MeOH (15:1) yielded toxyloxanthone B (3 mg), 1,5,6-trihydroxy-3-methoxy xanthone (3 mg), 3,8-dihydroxy-1,2-dimethoxy xanthone (2.6 mg), and 2 (2.5 mg); CH₂Cl₂-MeOH (9:1) yielded 3 (3 mg), 1,3,5,6-tetrahydroxy xanthone (2 mg), and 4 (10 mg). The known compounds were identified by spectroscopic methods and by comparison with authentic samples or reported data.²⁻⁴

Gemichalcone C (1): yellow powder (MeOH); UV (MeOH) λ_{max} (log ϵ) 295 (sh) (4.09), 3.18 (4.17), 388 (4.15) nm; + AlCl₃: unchanged; + NaOAc 290 (sh), 323, 398 nm; + NaOAc-H₃BO₃: unchanged; + NaOMe: 298 (sh), 367, 481 nm; IR (KBr) ν_{max} 3350, 1720, 1630 cm⁻¹; ¹H MNR (Me₂CO-d₆, 400 MHz), see text; ¹³C NMR (Me₂CO-d₆, 100 MHz), Table 1; FABMS (positive mode) m/z 533 [M + H]⁺ (0.3), 391 (0.1), 339 (0.4), 307 (1), 289 (1), 203 (3), 176 (8), 154 (23), 136 (21), 107 (21), 95 (38), 69 (65), 55 (100).

6,7-Dihydroxy-1,3-dimethoxyxanthone (2): yellow needles (CH₂Cl₂–MeOH); mp > 300 °C; UV (MeOH) λ_{max} (log ϵ) 240 (sh) (4.11), 303 (3.84), 350 (3.78), 400 (sh) (2.85) nm; + AlCl₃: unchanged; + NaOAc: 263, 370 nm; + NaOAc-H₃BO₃: 263, 350 nm; IR (KBr) v max 3330 (OH), 1633 (CO), 1581 (C=C) cm⁻¹; ¹H NMR (pyridine-*d*₅ 400 MHz), see text; ¹³C NMR (pyridined₅, 100 MHz), δ 96.1 (C-4), 96.6 (C-2), 103.4 (C-5), 106.5 (C-9a), 107.0 (C-8), 115.8 (C-8a), 146.6 (C-7), 151.7 (C-6), 154.5 (C-10a), 160.4 (C-4a), 162.2 (C-1), 164.5 (C-3), 174.1 (CO); EIMS (70 eV) m/z 288 [M]+ (100), [M - CO]+ 259 (49), 242 [M OH]⁺ (30); HREIMS m/z [M]⁺ 288.0635 (calcd for C₁₅H₁₂O₆, 288.0634).

4-Hydroxy-1,2-dimethoxyxanthone (3): yellow needles (CH₂Cl₂–MeOH); mp 200–203 °; UV (MeOH) λ_{max} (log ϵ) 237 (4.05), 256 (4.21), 350 (3.44), 400 (sh) (3.21) nm; IR (KBr) v max 3286 (OH), 1656 (CO), 1600 (C=C) cm⁻¹; ¹H NMR (Me₂CO d_6 , 400 MHz), see text; ¹³C NMR (Me₂CO- d_6 , 100 MHz), δ 97.9 (C-3), 119.0 (C-9a), 119.6 (C-5), 122.8 (C-8a), 125.4 (C-7), 127.7 (C-8), 136.0 (C-6), 141.0 (C-2 and 4a), 151.9 (C-1 and 4), 157.6

(C-10a), 176.9 (CO); EIMS (70 eV) m/z 272 [M]+ (100) 257 (26), 229 (13), 214 (17), 183 (11), 149 (15), 102 (29), 69 (73); HREIMS m/z 272.0681 (calcd for C15H12O5, 272.0685).

Gemixanthone A Acetate (5). A solution of 4 (4 mg) in 1 mL of anhydrous pyridine was treated with 1 mL of Ac₂O in a water bath for 12 h. The reaction mixture was concentrated under reduced pressure to remove excess solvent, and H₂O was added to destroy excess Ac₂O. The residue was concentrated under reduced pressure to give 5. Purification by column chromatography and recrystallization from CHCl₃ gave a white powder ($\mathbf{5}$, 2 mg): $[\alpha]^{26}$ $-21^{\circ}(c \ 0.07, \text{ CHCl}_3)$; mp 241-242 °C; UV (MeOH) λ_{max} (log ϵ) 250 (4.26), 286 (3.61), 319 (3.78), 402 (sh) (3.18) nm; IR (KBr) ν_{max} 1775, 1661, 1611 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz), text and Table 1; ¹³C NMR (CDCl₃, 100 MHz), see Table 1; EIMS (70 eV) m/z 638 [M]+ (8), 596 [M $- \text{COCH}_2$ ⁺ (6), 345 [596 - 252]⁺ (4), 303 [345 - COCH₂]⁺ (4); 284 [ArCHO - CHO - CH₂OAc]⁺ (2), 252 [ArCH=CH - CH_2OAc]⁺ (43), 210 [ArCH=CH - CH₂OH]⁺ (3), 209 [210 -H] $^{+}$ (7), 192 [210 - H₂O] $^{+}$ (3), 182 [210 - COO] $^{+}$ (1), 181 [210 - HCO]⁺ (3); HREIMS *m*/*z* 638.1675 [M]⁺ (calcd for C₃₂H₃₀O₁₄, 638.1636).

Acknowledgment. This work was supported by a grant from the National Science Council of the Republic of China (NSC 86-2314-B037-035).

References and Notes

- Chung, M. I.; Lai, M. H.; Yen, M. H.; Wu, R. R.; Lin, C. N. *Phytochemistry* 1997, 44, 943–947.
 Chen, M. Y.; Chen, C. M. *Hetercycles* 1985, 23, 2543–2548.
 Cotterill, P. J.; Scheinmann, F.; Puranik, G. S. *Phytochemistry* 1977,
- 16, 148-149.
- Marston, A.; Hamburger, M.; Sordat-Diserens; Msonthi, I. J. D.; Hostettmann, K. *Phytochemistry* **1993**, *33*, 809–812.
 (5) Lin, C. N.; Liou, S. S., Ko, F. N.; Teng, C. M. *J. Pharm. Sci.* **1992**, *81*, 1109–1112.
- (6) Takasugi, M.; Nago, S.; Masamune, T.; Shirata, A.; Takahashi, K.
- Chem. Lett. 1980, 1573-1576. Nakagawa, M.; Nakanishi, K. Tetrahedron Lett. 1982, 23, 3855-3858.
- Ueda, S.; Nomura, T.; Fukai, T.; Matsumoto, J. Chem. Pharm. Bull. (8)
- 1982, 30, 3042–3045.
 (9) Lin, C. N.; Chang, C. H.; Arisawa, M.; Shimizu, M.; Morita, N. *Phytochemistry* 1982, 21, 948–949.
- (10) Ikeya, Y.; Sugama, K.; Maruno, M. Chem. Pharm. Bull. 1994, 42, 2305-2308. (11) Scott, A. I. Interpretation of the Ultraviolet Spectra of Natural
- *Products*; Pergamon: Oxford, 1964; p 158. (12) Chaudhuri, R. K.; Zymalkowski, F.; Frahm, A. W. *Tetrahedron* **1978**,
- 34, 1837-1840.
- (13) Frahm, A. W.; Chaudhuri, R. K. Tetrahedron 1979, 35, 2035-2038. (14) Cardona, M. L.; Fernandez, M. I.; Pedro, J. R.; Seoane, E.; Vidal, R. J. Nat. Prod. 1986, 49, 95-100.
- (15) Castelao, J. F., Jr.; Gottlieb, O. R.; De Lima, R. A.; Mesquita, A. A. L. Phytochemistry 1977, 16, 735–740.

NP980533+